Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.346
1.
J Med Chem ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38712838

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.

2.
J Clin Oncol ; : JCO2301636, 2024 May 09.
Article En | MEDLINE | ID: mdl-38723227

PURPOSE: Open-label phase II study (RELATIVITY-060) to investigate the efficacy and safety of first-line nivolumab, a PD-1-blocking antibody, plus relatlimab, a lymphocyte-activation gene 3 (LAG-3)-blocking antibody, plus chemotherapy in patients with previously untreated advanced gastric cancer (GC) or gastroesophageal junction cancer (GEJC). METHODS: Patients with unresectable, locally advanced or metastatic GC/GEJC were randomly assigned 1:1 to nivolumab + relatlimab (fixed-dose combination) + chemotherapy or nivolumab + chemotherapy. The primary end point was objective response rate (ORR; per RECIST v1.1 by blinded independent central review [BICR]) in patients whose tumors had LAG-3 expression ≥1%. RESULTS: Of 274 patients, 138 were randomly assigned to nivolumab + relatlimab + chemotherapy and 136 to nivolumab + chemotherapy. Median follow-up was 11.9 months. In patients with LAG-3 expression ≥1%, BICR-assessed ORR (95% CI) was 48% (38 to 59) in the nivolumab + relatlimab + chemotherapy arm and 61% (51 to 71) in the nivolumab + chemotherapy arm; median progression-free survival (95% CI) by BICR was 7.0 months (5.8 to 8.4) versus 8.3 months (6.9 to 12.1; hazard ratio [HR], 1.41 [95% CI, 0.97 to 2.05]), and median overall survival (95% CI) was 13.5 months (11.9 to 19.1) versus 16.0 months (10.9 to not estimable; HR, 1.04 [95% CI, 0.70 to 1.54]), respectively. Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 69% and 61% of all treated patients, and 42% and 36% of patients discontinued because of any-grade TRAEs in the nivolumab + relatlimab + chemotherapy and nivolumab + chemotherapy arms, respectively. CONCLUSION: RELATIVITY-060 did not meet its primary end point of improved ORR in patients with LAG-3 expression ≥1% when relatlimab was added to nivolumab + chemotherapy compared with nivolumab + chemotherapy. Further studies are needed to address whether adding anti-LAG-3 to anti-PD-1 plus chemotherapy can benefit specific GC/GEJC patient subgroups.

3.
Bioact Mater ; 37: 517-532, 2024 Jul.
Article En | MEDLINE | ID: mdl-38698916

The cardiotoxicity caused by Dox chemotherapy represents a significant limitation to its clinical application and is a major cause of late death in patients undergoing chemotherapy. Currently, there are no effective treatments available. Our analysis of 295 clinical samples from 132 chemotherapy patients and 163 individuals undergoing physical examination revealed a strong positive correlation between intestinal barrier injury and the development of cardiotoxicity in chemotherapy patients. We developed a novel orally available and intestinal targeting protein nanodrug by assembling membrane protein Amuc_1100 (obtained from intestinal bacteria Akkermansia muciniphila), fluorinated polyetherimide, and hyaluronic acid. The protein nanodrug demonstrated favorable stability against hydrolysis compared with free Amuc_1100. The in vivo results demonstrated that the protein nanodrug can alleviate Dox-induced cardiac toxicity by improving gut microbiota, increasing the proportion of short-chain fatty acid-producing bacteria from the Lachnospiraceae family, and further enhancing the levels of butyrate and pentanoic acids, ultimately regulating the homeostasis repair of lymphocytes in the spleen and heart. Therefore, we believe that the integrity of the intestinal barrier plays an important role in the development of chemotherapy-induced cardiotoxicity. Protective interventions targeting the intestinal barrier may hold promise as a general clinical treatment regimen for reducing Dox-induced cardiotoxicity.

4.
Infect Drug Resist ; 17: 1599-1614, 2024.
Article En | MEDLINE | ID: mdl-38699075

Introduction: As the last line of defense for clinical treatment, Carbapenem antibiotics are increasingly challenged by multi-drug resistant bacteria containing carbapenemases. The rapid spread of these multidrug-resistant bacteria is the greatest threat to severe global health problems. Methods: To solve the problem of rapid transmission of this multidrug-resistant bacteria, we have developed a rapid detection technology using CRPSPR-Cas12a gene editing based on multiple Recombinase polymerase amplification. This technical method can directly isolate the genes of carbapenemase-containing bacteria from samples, with a relatively short detection time of 30 minutes. The instrument used for the detection is relatively inexpensive. Only a water bath can complete the entire experiment of Recombinase polymerase amplification and trans cleavage. This reaction requires no lid during the entire process while reducing a large amount of aerosol pollution. Results: The detection sensitivity of this method is 1.5 CFU/mL, and the specificity is 100%. Discussion: This multi-scene detection method is suitable for screening populations in wild low-resource environments and large-scale indoor crowds. It can be widely used in hospital infection control and prevention and to provide theoretical insights for clinical diagnosis and treatment.

5.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701189

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Multiple Sclerosis , Oxidative Phosphorylation , Animals , Multiple Sclerosis/immunology , Humans , Cytokines/immunology , Cytokines/metabolism , Mice , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Female , Male , Mice, Inbred C57BL , Adult , Adenosine Triphosphate/metabolism , Middle Aged
6.
Phys Rev Lett ; 132(16): 160201, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38701466

Quantum theory allows information to flow through a single device in a coherent superposition of two opposite directions, resulting into situations where the input-output direction is indefinite. Here we introduce a theoretical method to witness input-output indefiniteness in a single quantum device, and we experimentally demonstrate it by constructing a photonic setup that exhibits input-output indefiniteness with a statistical significance exceeding 69 standard deviations. Our results provide a way to characterize input-output indefiniteness as a resource for quantum information and photonic quantum technologies and enable tabletop simulations of hypothetical scenarios exhibiting quantum indefiniteness in the direction of time.

7.
J Hazard Mater ; 471: 134312, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640681

Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.


Fluorocarbons , Hyperuricemia , Kidney , Uric Acid , Humans , Uric Acid/blood , Hyperuricemia/chemically induced , Hyperuricemia/blood , Male , Middle Aged , Female , Adult , Fluorocarbons/toxicity , Fluorocarbons/blood , Cross-Sectional Studies , Kidney/drug effects , Kidney/physiopathology , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure/adverse effects , Nutrition Surveys , Aged
8.
ACS Infect Dis ; 10(5): 1654-1663, 2024 May 10.
Article En | MEDLINE | ID: mdl-38578697

MicroRNA-mediated metabolic reprogramming recently has been identified as an important strategy for Mycobacterium tuberculosis (Mtb) to evade host immune responses. However, it is unknown what role microRNA-144-3p (miR-144-3p) plays in cellular metabolism during Mtb infection. Here, we report the meaning of miR-144-3p-mediated lipid accumulation for Mtb-macrophage interplay. Mtb infection was shown to upregulate the expression of miR-144-3p in macrophages. By targeting peroxisome proliferator-activated receptor α (PPARα) and ATP-binding cassette transporter A1 (ABCA1), miR-144-3p overexpression promoted lipid accumulation and bacterial survival in Mtb-infected macrophages, while miR-144-3p inhibition had the opposite effect. Furthermore, reprogramming of host lipid metabolism by miR-144-3p suppressed autophagy in response to Mtb infection. Our findings uncover that miR-144-3p regulates host metabolism and immune responses to Mtb by targeting PPARα and ABCA1, suggesting a potential host-directed tuberculosis therapy by targeting the interface of miRNA and lipid metabolism.


ATP Binding Cassette Transporter 1 , Autophagy , Lipid Metabolism , Macrophages , MicroRNAs , Mycobacterium tuberculosis , PPAR alpha , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Mycobacterium tuberculosis/genetics , Humans , Macrophages/microbiology , Macrophages/metabolism , Tuberculosis/microbiology , Animals , Mice , Host-Pathogen Interactions
9.
J Affect Disord ; 356: 346-355, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38626809

BACKGROUND: The association between frailty and psychiatric disorders has been reported in observational studies. However, it is unclear whether frailty facilitates the appearance of psychiatric disorders or vice versa. Therefore, we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causality. METHODS: Independent genetic variants associated with frailty index (FI) and psychiatric disorders were obtained from large genome-wide association studies (GWAS). The inverse variance weighted method was utilized as the primary method to estimate causal effects, followed by various sensitivity analyses. Multivariable analyses were performed to further adjust for potential confounders. RESULTS: The present MR study revealed that genetically predicted FI was significantly and positively associated with the risk of major depressive disorder (MDD) (odds ratio [OR] 1.79, 95 % confidence interval [CI] 1.48-2.15, P = 1.06 × 10-9), anxiety disorder (OR 1.61, 95 % CI 1.19-2.18, P = 0.002) and neuroticism (OR 1.38, 95 % CI 1.18-1.61, P = 3.73 × 10-5). In the reverse MR test, genetic liability to MDD (beta 0.232, 95 % CI 0.189-0.274, P = 1.00 × 10-26) and neuroticism (beta 0.128, 95 % CI 0.081-0.175, P = 8.61 × 10-8) were significantly associated with higher FI. Multivariable analyses results supported the causal association between FI and MDD and neuroticism. LIMITATIONS: Restriction to European populations, and sample selection bias. CONCLUSIONS: Our study suggested a bidirectional causal association between frailty and MDD neuroticism, and a positive correlation of genetically predicted frailty on the risk of anxiety disorder. Developing a deeper understanding of these associations is essential to effectively manage frailty and optimize mental health in older adults.


Anxiety Disorders , Depressive Disorder, Major , Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Neuroticism , Humans , Frailty/genetics , Frailty/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Anxiety Disorders/genetics , Anxiety Disorders/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology , Male , Aged , Female , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide
10.
Mol Med ; 30(1): 55, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664616

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Apoptosis , Chondrocytes , Extracellular Matrix , Hyaluronoglucosaminidase , NF-kappa B , Osteoarthritis , Signal Transduction , Animals , Humans , Male , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Proteomics/methods
11.
Front Microbiol ; 15: 1376418, 2024.
Article En | MEDLINE | ID: mdl-38659977

Alpine wetlands are critical ecosystems for global carbon (C) cycling and climate change mitigation. Ecological restoration projects for alpine grazing wetlands are urgently needed, especially due to their critical role as carbon (C) sinks. However, the fate of the C pool in alpine wetlands after restoration from grazing remains unclear. In this study, soil samples from both grazed and restored wetlands in Zoige (near Hongyuan County, Sichuan Province, China) were collected to analyze soil organic carbon (SOC) fractions, arbuscular mycorrhizal fungi (AMF), soil properties, and plant biomass. Moreover, the Tea Bag Index (TBI) was applied to assess the initial decomposition rate (k) and stabilization factor (S), providing a novel perspective on SOC dynamics. The results of this research revealed that the mineral-associated organic carbon (MAOC) was 1.40 times higher in restored sites compared to grazed sites, although no significant difference in particulate organic carbon (POC) was detected between the two site types. Furthermore, the increased MAOC after restoration exhibited a significant positive correlation with various parameters including S, C and N content, aboveground biomass, WSOC, AMF diversity, and NH4+. This indicates that restoration significantly increases plant primary production, litter turnover, soil characteristics, and AMF diversity, thereby enhancing the C stabilization capacity of alpine wetland soils.

12.
Vascular ; : 17085381241251426, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664953

OBJECTIVE: Vascular aberrancy of superior mesenteric artery (SMA) may contribute to the occurrence of SMA dissection. However, there is no direct evidence to support this hypothesis. Etiology, natural history, classification, and treatment options of ISMAD are still in controversial at some degree. We also review the current understanding of ISMAD based on our results. METHODS: Out of 57 patients, 2 cases of isolated superior mesenteric artery dissection (ISMAD) which concomitant with replaced common hepatic artery with SMA origin, are first reported. RESULTS: Two patients have no any typical etiological factors, such as atherosclerosis, hypertension, long-term smoking, and connective tissue disease. The contrast-enhanced computed tomography and (or) angiography showed concomitant SMA aberrancy. They have 81.2°, 132.7° SMA angle, respectively. After conservative treatment of 4, 6 days, respectively, these 2 patients were discharged smoothly. CONCLUSION: Vascular aberrancy may be a new identified risk factor for ISMAD. Even in ISMAD cases with vascular aberrancy, conservative treatment still can be used as first line therapy.

13.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637883

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , NF-E2-Related Factor 2/genetics , Neuroendocrine Tumors/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Signal Transduction
14.
Front Immunol ; 15: 1374270, 2024.
Article En | MEDLINE | ID: mdl-38650938

Pulmonary sarcomatoid carcinoma (PSC) represents a rare and highly aggressive variant of lung cancer, characterized by its recalcitrance to conventional therapeutic modalities and the attendant dismal prognosis it confers. Recent breakthroughs in immunotherapy have presented novel prospects for PSC patients; nevertheless, the utility of neoadjuvant/conversional immunotherapy in the context of PSC remains ambiguous. In this report, we present a middle-aged male presenting with Stage III PSC, notable for its high expression of the programmed death-ligand 1 (PD-L1), initially deemed as non-resectable for sizeable tumor mass and multiple lymph nodes metastases. The patient underwent a transformation to a resectable state after a regimen of three cycles of platinum-based chemotherapy plus immunotherapy. Following definitive surgical resection, the individual realized a pathological complete response (pCR), culminating in a significant prolongation of event-free survival (EFS). This case underscores the viability of employing immunochemotherapy as a neoadjuvant/conversional strategy for chosen cases of PSC.


Lung Neoplasms , Humans , Male , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Middle Aged , Neoplasm Staging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoadjuvant Therapy/methods , Immunotherapy/methods , Treatment Outcome , B7-H1 Antigen/antagonists & inhibitors , Carcinosarcoma/therapy , Carcinosarcoma/pathology , Carcinosarcoma/drug therapy
15.
IEEE Comput Graph Appl ; PP2024 Apr 22.
Article En | MEDLINE | ID: mdl-38648158

In this paper, we propose TraVis, an interactive system that allows users to explore and analyze complex traffic trajectory data at urban intersections. Trajectory data contains a large amount of spatio-temporal information, and while previous studies have mainly focused on the macroscopic aspects of traffic flow, TraVis employs visualization methods to investigate and analyze microscopic traffic events, i.e., high-value scenes in trajectory data. TraVis contains a novel view design and provides multiple interaction modalities to offer users the most intuitive insights into high-value scenes. With this system, users can gain a better understanding of urban intersection traffic information, identify different types of high-value scenes, explore the reasons behind their occurrence, and gain deeper insights into urban intersection traffic. Through two case studies, we illustrate how to use the system and validate its effectiveness.

16.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 345-351, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38595256

OBJECTIVE: To analyze the influence of forming direction on the surface characteristics, elastic modulus, bending strength and fracture toughness of printed parts and the relationship between forming direction and force direction, and to provide scientific basis and guidance for the clinical application of oral denture base resin materials. METHODS: The 3D printing technology was used to print denture base resin samples. The shape and size of the samples referred to the current standard for testing conventional denture base materials. The samples used for physical performance testing were cylindrical (with a diameter of 15 mm and a thickness of 1 mm) and printed at different angles along the Z axis (0°, 45°, 90°). Scanning electron microscope was used to observe the microscopic topography of the different samples. The color stability of different samples was observed by color stabilizer. The surface roughness of the samples was analyzed by using surface roughness tester. The Vickers hardness was measured to analyze the hardness of the samples. The samples used for mechanical performance testing were rectangular (elastic modulus and bending strength: A length of 64 mm, a width of 10 mm, and a height of 3.3 mm; fracture toughness: A length of 39 mm, a width of 8 mm, and a height of 4 mm), divided into two groups: W group and H group. The W group was printed from the bottom up along the Z axis with the length × width as the bottom surface parallel to the X, Y axis plane, while the H group printed from the bottom up along the Z axis with the length × height as the bottom surface parallel to the X, Y axis plane. The forming angles of both groups were equally divided into 0°, 45°, and 90°. The elastic modulus, bending strength and fracture toughness of different samples were studied through universal mechanical testing machine. SPSS 22.0 software was used for statistical analysis. RESULTS: The microscopic topography and roughness of different samples were closely related to the printing direction, with significant differences between the 0°, 45°, and 90° specimens. The 0° specimens had the smoothest surface (roughness < 1 µm). The surface of the 45° specimen was the roughest (roughness>3 µm). The microhardness of the 0° sample was the best [(196.13±0.20) MPa], with a significant difference compared with the 90° sample [(186.62±4.81) MPa, P < 0.05]. The mechanical properties of different samples were also closely related to the printing direction. The elastic modulus, bending strength, and fracture toughness of the 45° samples in the W group were the highest compared with the other groups. The results of elastic modulus showed that in the H group, the 45° specimens had the highest elastic mo-dulus, which was significantly different from the 0° and 90° specimens (P < 0.05). The elastic modulus of 0° and 45° specimens in the W group were higher than those in 90° specimens (P < 0.05). The bending strength results showed that there was no significant difference between the specimens from dif-ferent angles in the H group. The bending strength of the 90° specimens in the W group was the smallest, and there was a significant difference between 90° and the 0° and 45° specimens (P < 0.05); And the bendind strength of the 0° and 45° specimens in the W group was significantly higher than that of the 0° and 45° specimens in the H group (P < 0.05). The fracture toughness results showed that the fracture toughness of the H group specimens was lower than 1.9 MPa m1/2, which was specified in the denture base standard. The 45° samples in the W group were the highest, with significant differences compared with the 0° and 90° samples (P < 0.05). And the 90° samples of the W group specimens were lower than 1.9 MPa m1/2. And the fracture toughness of the 45° specimen in the W group was significantly higher than that of all the specimens in the H group (P < 0.05). CONCLUSION: The 0° samples had relatively better physical properties. The 45° samples had the best mechanical properties. But the fracture toughness of specimens (H group and 90° samples of W group) did not yet meet clinical requirements. That indicated that the characteristics of the 3D printing denture base resin were affected by the printing direction. Only when the performance of the printed samples in all directions met the minimum requirements of the standard, they could be used in clinical practice.


Printing, Three-Dimensional , Prosthodontics , Materials Testing , Surface Properties , Flexural Strength , Denture Bases
17.
Immunol Invest ; : 1-17, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38638027

BACKGROUND: Chondrocyte oxidative stress and apoptosis are critical factors contributing to the pathogenesis of osteoarthritis (OA). Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial protein that protects cells from oxidative stress and is involved in apoptosis. This study aimed to investigated the expression of MSRB2 in articular cartilage tissues and elucidated its effect on H2O2-stimulated chondrocytes. METHODS: Human chondrocytes were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12. MSRB2 overexpression in chondrocytes was achieved by transfecting with an MSRB2 overexpression plasmid. Western blot, quantitative RT-PCR, Immunofluorescence staining, and TUNEL assay were employed in this study. RESULTS: MSRB2 expression was found to be reduced in OA patients. Furthermore, overexpression of MSRB2 in H2O2-induced chondrocytes mitigated apoptosis and enhanced cell viability. Elevated MSRB2 expression diminished chondrocyte ROS contents, decreased cytochrome C (Cyc) in the cytoplasm, and regulated mitochondrial membrane potential to maintain mitochondrial homeostasis. Interestingly, knockdown of charged multivesicular body protein 5 (CHMP5) led to a decreased inMSRB2 expression in chondrocytes. Additionally, protein levels of CHMP5 and MSRB2 were reduced in H2O2-stimulated chondrocytes, and silencing CHMP5 reduced MSRB2 expression. Knockdown of CHMP5 increased cleaved caspase-3 expression in H2O2-induced chondrocytes and elevated TUNEL-positive chondrocytes. CONCLUSION: MSRB2 decreased in OA, and overexpression of MSRB2 alleviated oxidative stress and apoptosis of chondrocyte.

18.
Mater Horiz ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38629215

Magnetic propulsion of nano-/micro-robots is an effective way to treat implant-associated infections by physically destroying biofilm structures to enhance antibiotic killing. However, it is hard to precisely control the propulsion in vivo. Magnetic-nanoparticle coating that can be magnetically pulled off does not need precise control, but the requirement of adhesion stability on an implant surface restricts its magnetic responsiveness. Moreover, whether the coating has been fully pulled-off or not is hard to ensure in real-time in vivo. Herein, composited silk fibroins (SFMA) are optimized to stabilize Fe3O4 nanoparticles on a titanium surface in a dry environment; while in an aqueous environment, the binding force of SFMA on titanium is significantly reduced due to hydrophilic interaction, making the coating magnetically controllable by an externally-used magnet but still stable in the absence of a magnet. The maximum working distance of the magnet can be calculated using magnetomechanical simulation in which the yielding magnetic traction force is strong enough to pull Fe3O4 nanoparticles off the surface. The pulling-off removes the biofilms that formed on the coating and enhances antibiotic killing both in vitro and in a rat sub-cutaneous implant model by up to 100 fold. This work contributes to the practical knowledge of magnetic propulsion for biofilm treatment.

19.
J Org Chem ; 89(8): 5423-5433, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38557074

Currently, most conventional methods to achieve imidazo[1,5-a]pyridines have limitations for the synthesis of 3-acyl imidazo[1,5-a]pyridines. Herein, a novel and efficient Cu(I)-catalyzed three-component annulation method for the synthesis of valuable 3-acyl imidazo[1,5-a]pyridines by the reaction of 2-pyridinyl-substituted p-QMs, terminal alkynes, and TsN3 in the presence of O2 under mild conditions have successfully been developed. The investigation indicated that molecular oxygen (O2) and TsN3, respectively, serving as oxygen and nitrogen sources, were essential for the successful completion of the reaction system.

20.
Article En | MEDLINE | ID: mdl-38558145

Previous studies about anhedonia symptoms in bipolar depression (BD) ignored the unique role of gender on brain function. This study aims to explore the regional brain neuroimaging features of BD with anhedonia and the sex differences in these patients. The resting-fMRI by applying fractional amplitude of low-frequency fluctuation (fALFF) method was estimated in 263 patients with BD (174 high anhedonia [HA], 89 low anhedonia [LA]) and 213 healthy controls. The effects of two different factors in patients with BD were analyzed using a 3 (group: HA, LA, HC) × 2 (sex: male, female) ANOVA. The fALFF values were higher in the HA group than in the LA group in the right medial cingulate gyrus and supplementary motor area. For the sex-by-group interaction, the fALFF values of the right hippocampus, left medial occipital gyrus, right insula, and bilateral medial cingulate gyrus were significantly higher in HA males than in LA males but not females. These results suggested that the pattern of high activation could be a marker of anhedonia symptoms in BD males, and the sex differences should be considered in future studies of BD with anhedonia symptoms.

...